If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-13x-78=0
a = 1; b = -13; c = -78;
Δ = b2-4ac
Δ = -132-4·1·(-78)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{481}}{2*1}=\frac{13-\sqrt{481}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{481}}{2*1}=\frac{13+\sqrt{481}}{2} $
| 25•x=180 | | 9x=5x-3 | | 16200-303n+3n^2=0 | | (x+4)+(-5x+6)=-30 | | 4x=3x(9-x) | | (3z/7)-2=-3 | | 2x+16/5x+16=1/2 | | 7.8b-2.14=(-42.7) | | 4-3x=8÷20 | | 4-3x=8/20 | | (4x-6)*(2x+6)=0 | | (4x-6)(2x+6)=0 | | 6j^2-9j-8=0 | | (6x+20)+(4x+10=180 | | 3x24+1=180° | | (5x+13)=(2x+16) | | Q=120+2p | | 5(-3y-4)+13=11y+7(5-4y | | 4=x+41/7 | | 15x+5=42x+4 | | x2-3x+120=0 | | 5c-5=-5c-7 | | 0.36b=0.9 | | 76x-5=4x+27 | | 9(y−2)−8y=−16 | | 16-8n-1=n+-15-33+7n | | (28/y^2-25)+1=(6/y-5) | | 2(x-22)^2=10 | | 2(9x+3)=x-4 | | 6x+4=16x+2x | | x^2+12x-448=0 | | 2.0=(1000+111.095890)/x |